Computadoras

 

 

 

Nuenas Tecnologias

 

Con décadas de innovaciones potenciales por delante, los diseños microelectronicos convencionales dominarán el siglo próximo. Esta tendencia impulsa a los laboratorios a explorar una variedad de nuevas tecnologías que podrían ser útiles en el diseño de nuevas computadoras y unidades de procesamiento. En algunos casos estos avances contribuirán a obtener chips más diminutos, niveles inalcanzables a través de las técnicas convencionales litográficas. Entre las tecnologías que se investigan en el presente, de cara al siglo XXI, se encuentran las siguientes :

  • Cuántica de puntos y otras unidades de electrones simples la cuántica de puntos son “acuerdos moleculares “que habilitan a los investigadores a circunscribir los electrones individuales y monitorear sus movimientos. Estas unidades pueden, en teoría ser usadas como registro binarios en los cuales la presencia o ausencia de un solo electrón se utiliza para representar los ceros y unos de los bits. En una variante de este esquema, el rayo láser iluminado sobre los átomos podría producir el intercambio entre sus estados electrónicos mínimos de energía y los de excitación con el fin de activar el valor de bit. Una complicación de fabrica los transistores y cables extremadamente pequeños está dada cuando los efectos mecánicos comienzan a interrumpir su función. Los componentes lógicos mantienen sus valores I y O menos confiables porque la ubicación de los electrones Individuales se vuelve difícil de especificar. Pero aun  esta propiedad puede ser mejorada : los investigadores del MIT (Instituto Tecnológico de Massachusetts) estudian en este momento, las posibilidades de desarrollar técnicas de computación cuántica, que ayudarían a los sistemas informáticos a cumplir comportamientos no convencionales.

 

  • Computación molecular: en lugar de fabricar componentes de silicio, se investiga el desarrollo de almacenamiento utilizando moléculas biológicas. Por ejemplo, se analiza el potencial computacional de moléculas relacionadas con “bacteriorhodopsin”, un pigmento que altera su configuración cuando reacciona a la luz. Una ventaja de este sistema molecular es que puede ser aplicado a una computadora óptica, en la que los flujos de fotones tomarían el lugar de los electrones. Otra posibilidad es que muchas de estas moléculas podrían ser sintetizadas por microorganismos, más que fabricados en plantas industriales. De acuerdo con algunas estimaciones, los biomoléculas activadas fotónicamente pueden vincularse en un sistema de memoria tridimensional que tendría una capacidad 300 veces mayor que los actuales CD-ROMs

 

  • Puertas lógicas reversibles: como la densidad de los componentes de los chips crece, la disipación del calor generado por los  sistemas de microprocesamiento se volverá más dificultosa. Investigadores de Xerox e IBM están testeando las posibilidades de retornar a los capacitores a sus estados originales al final de los cálculos. Debido a que las puertas de acceso lógico podrían recapturar algo de la energía expulsada, generarían menos pérdidas de calor.

 

  • Aún no está claro de que manera se las ingeniará la industria informática para crear transistores más delgados y más rápidos en los años venideros. Por ejemplo, en la técnica fotolitográfica, la luz es empleada para transferir patrones de circuitos de una máscara o plantilla de cuarzo a un chip de silicio. Ahora la tecnología modela diseños de chips de alrededor de 0,35 micrones de ancho, pero achicar esta medida parece imposible mientras se utilice la luz; las ondas luminosas son muy anchas. Muchas compañías  han invertido en la búsqueda de maneras de sustituir los más pequeños haces de luz por rayos X. De cualquier manera, los  rayos X aún no han resultado como método para masificar la producción de los chips de última generación.