La Superconductividad


 

 

Introducción

La superconductividad es un fenómeno que denota el estado en el cual la resistencia eléctrica de ciertos materiales de forma repentina hasta llegar a cero. La temperatura por debajo de la cual la resistencia eléctrica de un material se aproxima a cero absoluto se denomina temperatura critica (Tc). Por encima de esta temperatura, al material se le conoce como normal, y por debajo de Tc, se dice que es superconductor. Además de la temperatura el estado superconductor También depende de otras variables, como son el campo magnético (B) y la densidad de corriente (J). De este modo, para que en material sea superconductor, la temperatura critica del material, su campo magnético y su densidad de corriente no deben ser superadas de unos valores específicos para cada caso, ya que para cada material, superconductor existe una superficie critica en el espacio de T.B. y J. 

Para ilustrar lo dicho anteriormente presentamos la siguiente gráfica, donde se representa la resistividad de un material normal respecto a la temperatura, el cobre, frente a un material superconductor, como el mercurio. Podemos observar como la resistividad del material superconductor cae bruscamente hasta un valor casi inapreciable, mientras que la resistividad eléctrica del cobre decrece uniformemente mientras disminuye la temperatura, y alcanza un valor mínimo a 0ºK. 

Como anunciamos anteriormente la superconductividad depende del campo magnético puesto que si un campo magnético suficientemente fuerte se aplica a un superconductor a cualquier temperatura que este por debajo de su temperatura critica (Tc), el superconductor retorna a su estado normal. El campo magnético aplicado necesario para restablecer la conductividad eléctrica normal en el superconductor se denomina campo critico (Hc). La curva de Hc frente a la temperatura, T (ºK), puede aproximarse mediante la expresión: 

 

Hc = Ho [1-(T/Tc)^2]

 

donde Ho es el campo critico a una temperatura T=0ºK. Esta curva representa el limite o la frontera entre los estados normal y de superconductividad de un superconductor. 

Los superconductores metálicos e intermetálicos se clasifican, según su comportamiento frente al campo magnético aplicado, como superconductores de tipo I y de tipo II. Los superconductores del primer tipo También conocidos como superconductores blandos, presentan un valor de Tc y de Hc demasiado bajos para cualquier aplicación practica. Algunos elementos metálicos como el plomo, estaño, mercurio y el aluminio pertenecen a este grupo. Estos son conductores perfectos a la electricidad por debajo de Tc, pero cada uno pierde su propiedad a un valor critico del campo magnético por debajo de 1500 Oe. 

Si un cilindro largo d en superconductor de tipo I como Pb o Sn se coloca en un campo magnético a temperatura ambiente, el campo magnético penetra normalmente a través del metal. Sin embargo, si la temperatura del conductor del tipo I se reduce por debajo de su Tc (7,19ºK para el Pb) y si el campo magnético esta por debajo de Hc, el campo magnético es expulsado de la muestra con excepción de una capa de penetracion muy fina de unos 10^-5 cm en la superficie. Esta propiedad de expulsión de un campo magnético en el estado de superconducción recibe el nombre de Efecto Meissner. 

Los superconductores de tipo II se comporta de forma diferente en un campo magnético a temperaturas por debajo de la temperatura critica. Ellos son diamagneticos, como lo superconductores de tipo I, hasta un valor de un campo magnético aplicado llamado campo critico inferior Hc1, y de este modo el flujo magnético es rechazado del material. por encima de Hc1 el campo empieza a penetrar en el superconductor de tipo II y continua así hasta que alcanza el campo critico superior Hc2. En el intervalo entre Hc1 y Hc2 el superconductor esta en estado mixto y por encima de Hc2 vuelve a su estado normal. 

En la región Hc1 y Hc2 el superconductor puede conducir corriente eléctrica dentro del grueso del material y de esta forma esta región del campo magnético puede ser usada para superconductores de alto campo y alta corriente con el NiTi y Ni3Sb que son superconductores del tipo II. 

En la figura anterior se muestra el efecto Meissner antes explicado: 

Cuando la temperatura de un conductor del tipo I se reduce por debajo de Tc y el campo magnético esta por debajo de Hc, el campo magnético es completamente expedido desde una muestra, excepto en una pequeña capa superficial. 

Los superconductores del tipo I son poco transportadores de la corriente eléctrica, ya que la corriente solo puede fluir por la capa superficial externa de una muestra conductora. La razón por la cual sucede esto es que el campo magnético solo puede penetrar la capa superficial, y la corriente solo puede fluir por esta capa. En los superconductores de tipo II, por debajo de Hc1, los campos magnéticos se comportan de igual manera. 

 Sin embargo, si el campo se encuentra entre Hc1 y Hc2 (estado mixto), la corriente puede ser transportada por el interior del conductor en filamentos. En los superconductores de tipo II, cuando se aplica un campo magnético entre Hc1 y Hc2, el campo atraviesa el volumen del superconductor en forma de haces de flujos cuantizados e individuales, llamados fluxoides. Una supercorriente cilíndrica en torbellino rodea cada fluxoide. Con el aumento de la fuerza del campo magnético, mas y mas fluxoides entran en el superconductor y constituyen una formación periódica. Para Hc2 la estructura a base de vértices de supercorriente colapsa y el material vuelve a su estado de la conducción normal. 

Todos los materiales superconductores se pueden clasificar en tres grupos principales: elementos metálicos, aleaciones y compuestos. Los elementos metálicos pertenecen al tipo I, y no ofrecen grandes posibilidades de aplicaciones practicas. Sin embargo las aleaciones en especial aquellas que contiene elementos de transición como el Nb-Zr, Nb-Ti y Mo-Re, tienen una Tc alrededor de 10ºK, y un campo magnético critico relativamente elevado. Estas aleaciones se han utilizado en la construcción de bobinas superconductoras para imanes. Los mas prometedores son algunos compuestos intermetalicos (anteriormente anunciados) con un campo magnético muy elevado (210000 Oe). En el cuadro siguiente se proporcionan datos de unos cuantos materiales superconductores seleccionados, que pertenecen tanto al tipo I con al tipo II.